If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+7w-48=0
a = 1; b = 7; c = -48;
Δ = b2-4ac
Δ = 72-4·1·(-48)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{241}}{2*1}=\frac{-7-\sqrt{241}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{241}}{2*1}=\frac{-7+\sqrt{241}}{2} $
| -6s=10−4s | | -1+7b=-9+9b | | 5p+6=6p | | 12/5x=-7 | | -8(-6m+5)=104 | | 2(5+c)=-8c | | -115=-1-3(4n+6 | | 7(x+3)+4=-3(x-2)-7 | | 7-2x=2x-2 | | w(w+4)=-5 | | 3m+16=5m+2+4 | | (6a–16)+(3a+5)+(2a+4)=180 | | 4.5l=55.8 | | 11x-(5x-6)=-24 | | 4.5+l=55.8 | | -3v+11=-8+51 | | -3x+x-5=2 | | 5(x+4)=1/2(x+12) | | -1/4a-40=4 | | G=2/3a | | 32u-8-12u=11(2u-6) | | 9(t-2)=3(3t-2) | | 0=-5n+2 | | 1/x+1/x-12/x^2+9-6=0 | | 4y-4.1=21.5 | | 3h=6(2/7-3/7h)-10 | | 90x=630 | | 0.25s+2=-0.50s-4 | | 18.3+u/7=-4.1 | | -6(3x+20)=2x-5-20x-7 | | 5(-3x-2)-(-3)=-4(4x+5)+13 | | 2(x+5)-4x=18 |